η -Benzene(η -cyclopentadienyl)molybdenum 'Chemistry

By MALCOLM L. H. GREEN, JOHN KNIGHT, and JOHN A. SEGAL (Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR)

Summary An improved synthesis of the compound $[(\eta-C_5H_5)(\eta-C_6H_6)Mo]$ is described and the new 'bent' sandwich compounds $[(\eta-C_5H_5)(\eta-C_6H_6)MoX]$ (X = Me, H, Cl or I) and $[(\eta-C_5H_5)(\eta-C_6H_6)MoL]+PF_6^-$ (L = C_2 - H_4 , C_2H_2 , or PPh₃) are reported.

BIS- η -ARENEMOLYBDENUM and bis- η -cyclopentadienylmolybdenum compounds show extensive but very different chemistries.^{1,2} We were, therefore, interested to explore the chemistry of the mixed η -benzene- η -cyclopentadienylmolybdenum system. The 17-electron compound $[(\eta-C_6H_6)-(\eta-C_6H_6)Mo]$ (I) has been previously described^{3,4} but could be prepared only in inconveniently small yields so that it was not usefully available for further study.

The dimer $[(\eta - C_6H_6)Mo(\eta - C_3H_5)Cl]_2$ (II) is known to be capable of dehydrogenating straight-chain olefins in the presence of EtAlCl₂ dimer,⁵ and we have now synthesized (I) in high yield by application of this method to a cyclic mono-olefin. Thus the reaction of (II) with cyclopentene during 2 h at 20 °C in the presence of EtAlCl₂ gave a brown oil which could be converted into (I) (ca. 65%) by hydrolytic reduction using alkaline sodium dithionite at -40 °C. Alternatively, the new 'bent', mixed-sandwich, 18-electron compound $[(\eta - C_5H_5)(\eta - C_6H_6)MoCl]$ (III) may be prepared in ca. 85% yield by treatment of the brown oil with LiCl in MeOH. The corresponding iodo-complex $\left[(\eta - C_5 H_5)(\eta - C_6 H_6)\right]$ MoI] (IV) was obtained essentially quantitatively by reaction of (I) in light petroleum with iodine. Both (III) and (IV) form purple, air-sensitive crystals.

The new compounds $[(\eta - C_5H_5)(\eta - C_6H_6)MoMe]$ (V) and $[(\eta - C_5 H_5)(\eta - C_6 H_6)MoH]$ (VI) may be prepared in good yield by treatment of (III) with MeMgBr or NaBH₄ respectively. They are red, air-sensitive compounds which sublime with decomposition in vacuo at 80–90 °C $[\tau(C_6D_6); (V): 5.35]$ $(5H, s, \eta - C_5H_5)$, 6.14 (6H, s, $\eta - C_6H_6$), and 9.64 (3H, s, Me); (VI): 5.35 (5H, s, η -C₅H₅), 5.85 (6H, s, η -C₆H₆), and 11.77 (1H, s, Mo-H)].

As would be expected by analogy with bis- η -cyclopentadienylmolybdenum compounds the red crystalline cationic derivatives $[(\eta - C_5H_5)(\eta - C_6H_6)MoL]^+PF_6^-$ where $L = Ph_3P$ (VII), ethylene or acetylene (VIII) are formed from (III) by treatment with the appropriate ligand L in the presence of TIPF₆ in Me₂CO. In contrast to the non-labile ethylene compound $[(\eta - C_5H_5)_2Mo(\eta - C_2H_4)]^{2,6}$ the ethylene ligand in (VIII) is readily replaced by a donor solvent such as Me₂CO in the absence of excess of ethylene.

Details of the above reactions are given in the Scheme;

it is clear that this 'bent' mixed sandwich system has an extensive chemistry of obvious synthetic potential.

SCHEME. Reagents: i, EtAlCl₂ in C₆H₆ and excess of cyclopentene, 20 °C, 2 h; then Na₂S₂O₄ in 30% aq. KOH at -40 °C; ii, EtAlCl₂ in C₆H₆ and cyclopentene, 20 °C, 2 h; then LiCl in MeOH at -50 °C; iii, Stoicheiometric I₂ in pentane, 20 °C, 10 min, >90%; iv, MeMgBr in Et₂O-C₆H₆, 20 °C 30 min; v, NaBH₄ in tetrahydrofuran, 20 °C, 2.5 h; vi, excess of PPh₂ and teinheimetric TEPE in Ma CO 20 °C 20 min; viii Stoicheimetric stoicheiometric TIPF₆ in Me₂CO, 20 °C, 30 min; vii, Stoicheio-metric TIPF₆ in acetone under C_2H_4 or C_2H_2 , 20 °C, 30 min, n = 2 or 4.

We thank the Shell International Petroleum Company for financial support (to J.K.) and Wolfson College (J.K.) and the S.R.C. (J.A.S.) for Research Fellowships.

(Received, 9th January 1975; Com. 028.)

- ¹ M. L. H. Green and W. E. Silverthorn, J.C.S. Dalton, 1974, 2164, and references therein. ² For example, F. W. S. Benfield and M. L. H. Green, J.C.S. Dalton, 1974, 1324, and references therein.
- ¹ For example, F. W. S. Bernerd and M. L. H. Green, *J. S. Datton*, 1979, 1
 ² H. W. Wehner, E. O. Fischer, and J. Muller, *Chem. Ber.*, 1970, 103, 2258.
 ⁴ E. O. Fischer and F. J. Kohl, *Chem. Ber.*, 1965, 98, 2134.
 ⁵ M. L. H. Green and J. Knight, *J.C.S. Datton*, 1974, 311.
 ⁶ J. L. Thomas, *J. Amer. Chem. Soc.*, 1973 95, 1838.